Management of Airway Remodeling in a Mouse Model of Allergic Airways Inflammation Using Extracellular Vesicles from Human Bone Marrow-Derived Mesenchymal Stromal Cells

Asthma is a chronic respiratory disease affecting 300 million people worldwide. It results in several structural changes in the airways, which are minimally accessible in clinical practice. Cell therapy using mesenchymal stromal cells (MSCs) is a promising strategy for treating asthma due to the par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brazilian Archives of Biology and Technology 2022, Vol.65
Hauptverfasser: Fragoso, Felipe Yukio Ishikawa, Michelotto, Pedro Vicente, Angulski, Addeli Bez Batti, Leite, Lidiane Maria Boldrini, Senegaglia, Alexandra Cristina, Olandoski, Márcia, Dominguez, Alejandro Correa, Brofman, Paulo Roberto Slud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Asthma is a chronic respiratory disease affecting 300 million people worldwide. It results in several structural changes in the airways, which are minimally accessible in clinical practice. Cell therapy using mesenchymal stromal cells (MSCs) is a promising strategy for treating asthma due to the paracrine activity of MSCs, which influences tissue regeneration and modulates the immune response. Studies using extracellular vesicles (EV) released by MSCs have demonstrated their regenerative properties in animal models. The aim of this study was to evaluate the potential of EVs isolated from human bone marrow MSCs (hBM-MSCs) to control lung tissue remodeling in ovalbumin-induced allergic asthma in Balb/c mice. We isolated hBM-MSCs from a single donor, expanded and characterized them, and then isolated EVs. Asthma was induced in 43 male Balb/c mice, divided into four groups: control, asthmatic (AS), asthmatic plus systemic EVs (EV-S), and asthmatic plus intratracheal EVs (EV-IT). Upon completion of asthma induction, animals were treated with EVs either locally (EV-IT) or intravenously (EV-S). Seven days after, we performed bronchoalveolar lavage (BAL) and the total nuclear cells were counted. The animals were euthanized, and the lungs were collected for histopathological analysis of the airways. The EV-S group showed improvement in only the total BAL cell count compared with the AS group, while the EV-IT group showed significant improvement in almost all evaluated criteria. Therefore, we demonstrate that the local application of EVs derived from hBM-MSCs may be a potential treatment in controlling asthma.
ISSN:1516-8913
1678-4324
DOI:10.1590/1678-4324-2022200620