All-polymer-based ammonia gas sensor: applying insights from the morphology-driven ac electrical performance
Abstract This paper investigates the electrical, morphological, and mechanical behavior of ultrathin layer-by-layer polyaniline/poly(vinyl sulfonic acid) (PANI/PVS) ultrathin films for ammonia gas sensing. Atomic force microscopy shows that the PANI/PVS surface's roughness increases almost line...
Gespeichert in:
Veröffentlicht in: | Polímeros, ciência e tecnologia ciência e tecnologia, 2024-01, Vol.34 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract This paper investigates the electrical, morphological, and mechanical behavior of ultrathin layer-by-layer polyaniline/poly(vinyl sulfonic acid) (PANI/PVS) ultrathin films for ammonia gas sensing. Atomic force microscopy shows that the PANI/PVS surface's roughness increases almost linearly with the number of PANI/PVS bilayers, while the surface morphology varies from a rod-like structure to a film-like architecture. Impedance measurements and their representation by a Cole-Cole model confirm this transition at ~15 bilayers. The designed sensor shows low response time (< 1 min), an optimal operating frequency range (1–100 Hz), high stability and sensibility to ammonia (~ 98 kΩ/ppm), and low sensibility to strain (~ 3.6 kΩ/%). This study suggests that hopping carriers' concentration remains constant, and hopping carriers' mobility changes with the number of bilayers. The simultaneous analysis of morphology with complex impedance measurements is a strategy for enhancing the electrical performance of low-cost and flexible organic sensing devices. |
---|---|
ISSN: | 0104-1428 1678-5169 1678-5169 |
DOI: | 10.1590/0104-1428.20230070 |