Recycling assessment of multilayer flexible packaging films using design of experiments

AbstractThe viability of recycling post-industrial packaging waste, compounded from multilayer laminated PET-PE films, for production of polymer blends with good physico-mechanical performance is analyzed. Initially, several PET-PE model-blends were prepared from fresh polymers and were compounded w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polímeros, ciência e tecnologia ciência e tecnologia, 2015-08, Vol.25 (4), p.371-381
Hauptverfasser: Uehara, Gabriel Abreu, França, Marcos Pini, Canevarolo Junior, Sebastiao Vicente
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:AbstractThe viability of recycling post-industrial packaging waste, compounded from multilayer laminated PET-PE films, for production of polymer blends with good physico-mechanical performance is analyzed. Initially, several PET-PE model-blends were prepared from fresh polymers and were compounded with different formulations, based on design of experiments (DOE). Polymer compatibilizers based on maleic anhydride (PE-g-MA) and glycidyl methacrylate (E-GMA) have been used to promote the compatibilization reaction. The physico-mechanical properties of the model-blends were evaluated by response surface methodology (RSM). Finally, the post-industrial waste was compounded with the same concentration of compatibilizers in the previous set of model-blends. The DOE methodology showed to be a useful tool for assessing the recycling, since it helped to produce recycled materials with acceptable physico-mechanical properties. Between both compatibilizers studied, PE-g-MA showed to be the best additive for compatibilization due to the presence of a polyamide component in the waste, which undergoes a kinetically favorable compatibilization reaction.
ISSN:0104-1428
1678-5169
0104-1428
DOI:10.1590/0104-1428.1965