Effect of two microshear test devices on bond strength and fracture pattern in primary teeth

This in vitro study evaluated the influence of two devices for application of shear load in microshear tests on bond strength and fracture pattern of primary enamel and dentin. Eighty primary molars were selected and flat enamel (40 teeth sectioned mesio-distally) and dentin (40 teeth sectioned tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brazilian dental journal 2013-12, Vol.24 (6), p.605-609
Hauptverfasser: Tedesco, Tamara Kerber, Garcia, Eugenio Jose, Soares, Fabio Zovico Maxnuck, Rocha, Rachel de Oliveira, Grande, Rosa Helena Miranda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This in vitro study evaluated the influence of two devices for application of shear load in microshear tests on bond strength and fracture pattern of primary enamel and dentin. Eighty primary molars were selected and flat enamel (40 teeth sectioned mesio-distally) and dentin (40 teeth sectioned transversally) surfaces were obtained. Both surfaces were polished to standardize the smear layer. Two-step etch-and-rinse adhesive systems (Adper Single Bond and XP Bond) were used. Polyethylene tubes was placed over the bonded surfaces and filled with composite resin. The microshear testing was performed after storage in water (24 h/37 °C) using two devices for application of microshear loads: a notched rod (Bisco Shear Bond Tester) or a knife edge (Kratos Industrial Equipment). Failure modes were evaluated using a stereomicroscope. Bond strength data were subjected to ANOVA and chi-square test to compare the failure mode distributions (α=0.05). No significant differences were observed between the groups for dentin and enamel bond strength or fracture patterns (p>0.05). The predominant failure mode was adhesive/mixed. In conclusion, the devices for application of shear loads did not influence the bond strength values, regardless of adhesive system and substrate.
ISSN:0103-6440
1806-4760
0103-6440
DOI:10.1590/0103-6440201302298