Climate variations affect the growth period of young Tectona grandis Linn F. in the Amazon
ABSTRACT Climate change is expected to increase the occurrence of severe droughts in the tropics, and little is known about its influence on tree dynamics. Tree-ring width and remote sensing tools can help understand the impacts of climate change on tree growth. We evaluated the applicability of NDV...
Gespeichert in:
Veröffentlicht in: | Acta Botânica Brasílica 2022-01, Vol.36 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT Climate change is expected to increase the occurrence of severe droughts in the tropics, and little is known about its influence on tree dynamics. Tree-ring width and remote sensing tools can help understand the impacts of climate change on tree growth. We evaluated the applicability of NDVI to obtain phenological metrics (e.g., start, peak, end, and length of growth season) and explored its relationship with tree-ring width of Tectona grandis (teak). The phenological metrics and tree-ring width were correlated with each other, and with both local (temperature, precipitation, solar insolation, Standardized Precipitation Evapotranspiration Index - SPEI) and large-scale (El Niño) climatic variables. The length of season and tree-ring width of teak were positively correlated with precipitation and negatively correlated with temperature in the initial months of the growth period. Tree-ring width was negatively correlated with El Niño events. Climate variables and length of season from the prior period were correlated with the tree-ring width of the current growing period. This study demonstrated that rather than directly affecting productivity, climate might also affect the length of the growing season, which would affect tree growth in the next season. |
---|---|
ISSN: | 0102-3306 1677-941X |
DOI: | 10.1590/0102-33062020abb0525 |