Write Avoidance Cache Coherence Protocol for Non-volatile Memory as Last-Level Cache in Chip-Multiprocessor
Non-Volatile Memories (NVMs) are considered as promising memory technologies for Last-Level Cache (LLC) due to their low leakage and high density. However, NVMs have some drawbacks such as high dynamic energy in modifying NVM cells, long latency for write operation, and limited write endurance. A nu...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2014, Vol.E97.D(8), pp.2166-2169 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Non-Volatile Memories (NVMs) are considered as promising memory technologies for Last-Level Cache (LLC) due to their low leakage and high density. However, NVMs have some drawbacks such as high dynamic energy in modifying NVM cells, long latency for write operation, and limited write endurance. A number of approaches have been proposed to overcome these drawbacks. But very little attention is paid to consider the cache coherency issue. In this letter, we suggest a new cache coherence protocol to reduce the write operations of the LLC. In our protocol, the block data of the LLC is updated only if the cache block is written-back from a private cache, which leads to avoiding useless write operations in the LLC. The simulation results show that our protocol provides 27.1% energy savings and 26.3% lifetime improvements in STT-RAM at maximum. |
---|---|
ISSN: | 0916-8532 1745-1361 |
DOI: | 10.1587/transinf.E97.D.2166 |