Constrained Least-Squares Density-Difference Estimation
We address the problem of estimating the difference between two probability densities. A naive approach is a two-step procedure that first estimates two densities separately and then computes their difference. However, such a two-step procedure does not necessarily work well because the first step i...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2014, Vol.E97.D(7), pp.1822-1829 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We address the problem of estimating the difference between two probability densities. A naive approach is a two-step procedure that first estimates two densities separately and then computes their difference. However, such a two-step procedure does not necessarily work well because the first step is performed without regard to the second step and thus a small error in the first stage can cause a big error in the second stage. Recently, a single-shot method called the least-squares density-difference (LSDD) estimator has been proposed. LSDD directly estimates the density difference without separately estimating two densities, and it was demonstrated to outperform the two-step approach. In this paper, we propose a variation of LSDD called the constrained least-squares density-difference (CLSDD) estimator, and theoretically prove that CLSDD improves the accuracy of density difference estimation for correctly specified parametric models. The usefulness of the proposed method is also demonstrated experimentally. |
---|---|
ISSN: | 0916-8532 1745-1361 |
DOI: | 10.1587/transinf.E97.D.1822 |