Drastic Anomaly Detection in Video Using Motion Direction Statistics

A novel approach for detecting anomaly in visual surveillance system is proposed in this paper. It is composed of three parts: (a) a dense motion field and motion statistics method, (b) motion directional PCA for feature dimensionality reduction, (c) an improved one-class SVM for one-class classific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2011/08/01, Vol.E94.D(8), pp.1700-1707
Hauptverfasser: LIU, Chang, WANG, Guijin, NING, Wenxin, LIN, Xinggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel approach for detecting anomaly in visual surveillance system is proposed in this paper. It is composed of three parts: (a) a dense motion field and motion statistics method, (b) motion directional PCA for feature dimensionality reduction, (c) an improved one-class SVM for one-class classification. Experiments demonstrate the effectiveness of the proposed algorithm in detecting abnormal events in surveillance video, while keeping a low false alarm rate. Our scheme works well in complicated situations that common tracking or detection modules cannot handle.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.E94.D.1700