Quantization-Based Approximate Nearest Neighbor Search with Optimized Multiple Residual Codebooks

Nearest neighbor search (NNS) among large-scale and high-dimensional vectors plays an important role in recent large-scale multimedia search applications. This paper proposes an optimized multiple codebook construction method for an approximate NNS scheme based on product quantization, where sets of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2011/07/01, Vol.E94.D(7), pp.1510-1514
Hauptverfasser: UCHIDA, Yusuke, TAKAGI, Koichi, KAWADA, Ryoichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nearest neighbor search (NNS) among large-scale and high-dimensional vectors plays an important role in recent large-scale multimedia search applications. This paper proposes an optimized multiple codebook construction method for an approximate NNS scheme based on product quantization, where sets of residual sub-vectors are clustered according to their distribution and the codebooks for product quantization are constructed from these clusters. Our approach enables us to adaptively select the number of codebooks to be used by trading between the search accuracy and the amount of memory available.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.E94.D.1510