Rolling Guidance Filter as a Clustering Algorithm
We propose a generalization of the rolling guidance filter (RGF) to a similarity-based clustering (SBC) algorithm which can handle general vector data. The proposed RGF-based SBC algorithm makes the similarities between data clearer than the original similarity values computed from the original data...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2021/10/01, Vol.E104.D(10), pp.1576-1579 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a generalization of the rolling guidance filter (RGF) to a similarity-based clustering (SBC) algorithm which can handle general vector data. The proposed RGF-based SBC algorithm makes the similarities between data clearer than the original similarity values computed from the original data. On the basis of the similarity values, we assign cluster labels to data by an SBC algorithm. Experimental results show that the proposed algorithm achieves better clustering result than the result by the naive application of the SBC algorithm to the original similarity values. Additionally, we study the convergence of a unimodal vector dataset to its mean vector. |
---|---|
ISSN: | 0916-8532 1745-1361 1745-1361 |
DOI: | 10.1587/transinf.2021PCL0001 |