Practical Evaluation of Online Heterogeneous Machine Learning

In recent years, the use of big data has attracted more attention, and many techniques for data analysis have been proposed. Big data analysis is difficult, however, because such data varies greatly in its regularity. Heterogeneous mixture machine learning is one algorithm for analyzing such data ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2020/12/01, Vol.E103.D(12), pp.2620-2631
Hauptverfasser: SESHIMO, Kazuki, OTA, Akira, NISHIO, Daichi, YAMANE, Satoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, the use of big data has attracted more attention, and many techniques for data analysis have been proposed. Big data analysis is difficult, however, because such data varies greatly in its regularity. Heterogeneous mixture machine learning is one algorithm for analyzing such data efficiently. In this study, we propose online heterogeneous learning based on an online EM algorithm. Experiments show that this algorithm has higher learning accuracy than that of a conventional method and is practical. The online learning approach will make this algorithm useful in the field of data analysis.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2020EDP7020