Shilling Attack Detection in Recommender Systems via Selecting Patterns Analysis

Collaborative filtering (CF) has been widely used in recommender systems to generate personalized recommendations. However, recommender systems using CF are vulnerable to shilling attacks, in which attackers inject fake profiles to manipulate recommendation results. Thus, shilling attacks pose a thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2016/10/01, Vol.E99.D(10), pp.2600-2611
Hauptverfasser: LI, Wentao, GAO, Min, LI, Hua, ZENG, Jun, XIONG, Qingyu, HIROKAWA, Sachio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Collaborative filtering (CF) has been widely used in recommender systems to generate personalized recommendations. However, recommender systems using CF are vulnerable to shilling attacks, in which attackers inject fake profiles to manipulate recommendation results. Thus, shilling attacks pose a threat to the credibility of recommender systems. Previous studies mainly derive features from characteristics of item ratings in user profiles to detect attackers, but the methods suffer from low accuracy when attackers adopt new rating patterns. To overcome this drawback, we derive features from properties of item popularity in user profiles, which are determined by users' different selecting patterns. This feature extraction method is based on the prior knowledge that attackers select items to rate with man-made rules while normal users do this according to their inner preferences. Then, machine learning classification approaches are exploited to make use of these features to detect and remove attackers. Experiment results on the MovieLens dataset and Amazon review dataset show that our proposed method improves detection performance. In addition, the results justify the practical value of features derived from selecting patterns.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2015EDP7500