Hybrid Integration of Visual Attention Model into Image Quality Metric

Integrating the visual attention (VA) model into an objective image quality metric is a rapidly evolving area in modern image quality assessment (IQA) research due to the significant opportunities the VA information presents. So far, in the literature, it has been suggested to use either a task-free...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2014, Vol.E97.D(11), pp.2971-2973
1. Verfasser: JUNG, Chanho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Integrating the visual attention (VA) model into an objective image quality metric is a rapidly evolving area in modern image quality assessment (IQA) research due to the significant opportunities the VA information presents. So far, in the literature, it has been suggested to use either a task-free saliency map or a quality-task one for the integration into quality metric. A hybrid integration approach which takes the advantages of both saliency maps is presented in this paper. We compare our hybrid integration scheme with existing integration schemes using simple quality metrics. Results show that the proposed method performs better than the previous techniques in terms of prediction accuracy.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2014EDL8141