On Optimizations of Edge-Valued MDDs for Fast Analysis of Multi-State Systems
In the optimization of decision diagrams, variable reordering approaches are often used to minimize the number of nodes. However, such approaches are less effective for analysis of multi-state systems given by monotone structure functions. Thus, in this paper, we propose algorithms to minimize the n...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2014, Vol.E97.D(9), pp.2234-2242 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the optimization of decision diagrams, variable reordering approaches are often used to minimize the number of nodes. However, such approaches are less effective for analysis of multi-state systems given by monotone structure functions. Thus, in this paper, we propose algorithms to minimize the number of edges in an edge-valued multi-valued decision diagram (EVMDD) for fast analysis of multi-state systems. The proposed algorithms minimize the number of edges by grouping multi-valued variables into larger-valued variables. By grouping multi-valued variables, we can reduce the number of nodes as well. To show the effectiveness of the proposed algorithms, we compare the proposed algorithms with conventional optimization algorithms based on a variable reordering approach. Experimental results show that the proposed algorithms reduce the number of edges by up to 15% and the number of nodes by up to 47%, compared to the conventional ones. This results in a speed-up of the analysis of multi-state systems by about three times. |
---|---|
ISSN: | 0916-8532 1745-1361 |
DOI: | 10.1587/transinf.2013LOP0011 |