On Optimizations of Edge-Valued MDDs for Fast Analysis of Multi-State Systems

In the optimization of decision diagrams, variable reordering approaches are often used to minimize the number of nodes. However, such approaches are less effective for analysis of multi-state systems given by monotone structure functions. Thus, in this paper, we propose algorithms to minimize the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2014, Vol.E97.D(9), pp.2234-2242
Hauptverfasser: NAGAYAMA, Shinobu, SASAO, Tsutomu, BUTLER, Jon T., THORNTON, Mitchell A., MANIKAS, Theodore W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the optimization of decision diagrams, variable reordering approaches are often used to minimize the number of nodes. However, such approaches are less effective for analysis of multi-state systems given by monotone structure functions. Thus, in this paper, we propose algorithms to minimize the number of edges in an edge-valued multi-valued decision diagram (EVMDD) for fast analysis of multi-state systems. The proposed algorithms minimize the number of edges by grouping multi-valued variables into larger-valued variables. By grouping multi-valued variables, we can reduce the number of nodes as well. To show the effectiveness of the proposed algorithms, we compare the proposed algorithms with conventional optimization algorithms based on a variable reordering approach. Experimental results show that the proposed algorithms reduce the number of edges by up to 15% and the number of nodes by up to 47%, compared to the conventional ones. This results in a speed-up of the analysis of multi-state systems by about three times.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2013LOP0011