Technology Mapping Method Using Integer Linear Programming for Low Power Consumption and High Performance in General-Synchronous Framework

In general-synchronous framework, in which the clock is distributed periodically to each register but not necessarily simultaneously, circuit performance is expected to be improved compared to complete-synchronous framework, in which the clock is distributed periodically and simultaneously to each r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2016/07/01, Vol.E99.A(7), pp.1366-1373
Hauptverfasser: KAWAGUCHI, Junki, MASHIKO, Hayato, KOHIRA, Yukihide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In general-synchronous framework, in which the clock is distributed periodically to each register but not necessarily simultaneously, circuit performance is expected to be improved compared to complete-synchronous framework, in which the clock is distributed periodically and simultaneously to each register. To improve the circuit performance more, logic synthesis for general-synchronous framework is required. In this paper, under the assumption that any clock schedule is realized by an ideal clock distribution circuit, when two or more cell libraries are available, a technology mapping method which assigns a cell to each gate in the given logic circuit by using integer linear programming is proposed. In experiments, we show the effectiveness of the proposed technology mapping method.
ISSN:0916-8508
1745-1337
DOI:10.1587/transfun.E99.A.1366