Known-Key Attacks on Generalized Feistel Schemes with SP Round Function
We present attacks on the generalized Feistel schemes, where each round function consists of a subkey XOR, S-boxes, and then a linear transformation (i.e. a Substitution-Permutation (SP) round function). Our techniques are based on rebound attacks. We assume that the S-boxes have a good differential...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2012/09/01, Vol.E95.A(9), pp.1550-1560 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present attacks on the generalized Feistel schemes, where each round function consists of a subkey XOR, S-boxes, and then a linear transformation (i.e. a Substitution-Permutation (SP) round function). Our techniques are based on rebound attacks. We assume that the S-boxes have a good differential property and the linear transformation has an optimal branch number. Under this assumption, we firstly describe known-key distinguishers on the type-1, -2, and -3 generalized Feistel schemes up to 21, 13 and 8 rounds, respectively. Then, we use the distinguishers to make several attacks on hash functions where Merkle-Damgård domain extender is used and the compression function is constructed with Matyas-Meyer-Oseas or Miyaguchi-Preneel hash modes from generalized Feistel schemes. Collision attacks are made for 11 rounds of type-1 Feistel scheme. Near collision attacks are made for 13 rounds of type-1 Feistel scheme and 9 rounds of type-2 Feistel scheme. Half collision attacks are made for 15 rounds of type-1 Feistel scheme, 9 rounds of type-2 Feistel scheme, and 5 rounds of type-3 Feistel scheme. |
---|---|
ISSN: | 0916-8508 1745-1337 |
DOI: | 10.1587/transfun.E95.A.1550 |