Image Quality Enhancement for Single-Image Super Resolution Based on Local Similarities and Support Vector Regression
In reconstruction-based super resolution, a high-resolution image is estimated using multiple low-resolution images with sub-pixel misalignments. Therefore, when only one low-resolution image is available, it is generally difficult to obtain a favorable image. This letter proposes a method for overc...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2011/02/01, Vol.E94.A(2), pp.552-554 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In reconstruction-based super resolution, a high-resolution image is estimated using multiple low-resolution images with sub-pixel misalignments. Therefore, when only one low-resolution image is available, it is generally difficult to obtain a favorable image. This letter proposes a method for overcoming this difficulty for single- image super resolution. In our method, after interpolating pixel values at sub-pixel locations on a patch-by-patch basis by support vector regression, in which learning samples are collected within the given image based on local similarities, we solve the regularized reconstruction problem with a sufficient number of constraints. Evaluation experiments were performed for artificial and natural images, and the obtained high-resolution images indicate the high-frequency components favorably along with improved PSNRs. |
---|---|
ISSN: | 0916-8508 1745-1337 |
DOI: | 10.1587/transfun.E94.A.552 |