Inductance Design Method for Boost Converter with Voltage Clamp Function

This paper presents a high-efficiency boost converter with voltage clamp function. It clarifies how to design the inductance of the coupled inductor used in the converter, and derives characteristic equations that associate the fluctuation in the input voltage with the output ripple current. For thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Communications 2013/01/01, Vol.E96.B(1), pp.81-87
Hauptverfasser: SUGA, Ikuro, TAKESHIMA, Yoshihiro, KUROKAWA, Fujio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a high-efficiency boost converter with voltage clamp function. It clarifies how to design the inductance of the coupled inductor used in the converter, and derives characteristic equations that associate the fluctuation in the input voltage with the output ripple current. For this converter, a theoretical analysis, simulation and experimentation (prototype output: 98V, 13A) are performed. As a result, the converter is achieved high efficiency (Maximum efficiency: 98.1%) in the rated output condition, indicating that the voltage stress on the switching power semiconductors can be mitigated by using the voltage clamp function. And it is verified that the snubber circuit can be eliminated in the switching power semiconductors. In addition, the theoretical output ripple current characteristics are corresponded well with simulation and experimental results, and the validity of the design method is proved.
ISSN:0916-8516
1745-1345
DOI:10.1587/transcom.E96.B.81