Mean Approximate Formulas for GI/G/1 Processor-Sharing System
The processor-sharing (PS) rule arises as a natural paradigm in a variety of practical situations, including time-shared computer systems. Although there has been much work on Poisson-input queueing analysis for the PS rule, there have been few results for renewal-input GI/G/1 (PS) systems. We consi...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Communications 2011/08/01, Vol.E94.B(8), pp.2247-2253 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The processor-sharing (PS) rule arises as a natural paradigm in a variety of practical situations, including time-shared computer systems. Although there has been much work on Poisson-input queueing analysis for the PS rule, there have been few results for renewal-input GI/G/1 (PS) systems. We consider the GI/G/1 (PS) system to provide develop a two-moment approximation for the mean performance measures. We derive the relationship between the mean unfinished work and the conditional mean sojourn time for the GI/G/1 (PS) system. Using this relationship, we derive approximate formulas for the mean conditional sojourn time, mean sojourn time, and the mean number of customers in the GI/G/1 (PS) system. Numerical examples are presented to compare the approximation with exact and simulated results. We show that the proposed approximate formulas have good accuracy. |
---|---|
ISSN: | 0916-8516 1745-1345 |
DOI: | 10.1587/transcom.E94.B.2247 |