Triple Hybrid Simulation Method for Tungsten Fuzzy Nanostructure Formation
To represent the formation of fuzzy nanostructures produced on a tungsten surface by exposure to a helium plasma, we have developed a hybrid simulation method that combines the binary collision approximation, molecular dynamics, and kinetic Monte Carlo calculations (BCA-MD-KMC). Since the MD code ha...
Gespeichert in:
Veröffentlicht in: | Plasma and Fusion Research 2018/06/15, Vol.13, pp.3403061-3403061 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To represent the formation of fuzzy nanostructures produced on a tungsten surface by exposure to a helium plasma, we have developed a hybrid simulation method that combines the binary collision approximation, molecular dynamics, and kinetic Monte Carlo calculations (BCA-MD-KMC). Since the MD code has been parallelized using the domain decomposition method (DDM) for execution in a multi-CPU environment, we developed the BCA code from scratch to mesh it efficiently with the DDM. The BCA-MD-KMC hybrid simulation code achieved a helium irradiation time of 0.1 seconds or longer, in spite of functioning at the level of atomic-scale models. In consequence, we have been able to observe the formation of concave and convex structures on a tungsten surface in the simulation. |
---|---|
ISSN: | 1880-6821 1880-6821 |
DOI: | 10.1585/pfr.13.3403061 |