Numerical Scheme CSPH – TVD: Investigation of Influence Slope Limiters

The generalisation of combined lagrange-eulerian numerical scheme cSPH — TVD for ideal gas-dynamics equations without extarnal forces in one-dimensional case was described. The results of the Riemann problems numerical simulation for different variants of this numerical scheme are shown. Influence o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Physics and Computer Modeling 2014-02 (1), p.22-34
Hauptverfasser: Kuz’min, Nikolay, Bеlousov, Anton, Shushkеvich, Tat’yana, Khrapov, Sеrgеy
Format: Artikel
Sprache:eng ; rus
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The generalisation of combined lagrange-eulerian numerical scheme cSPH — TVD for ideal gas-dynamics equations without extarnal forces in one-dimensional case was described. The results of the Riemann problems numerical simulation for different variants of this numerical scheme are shown. Influence of slope-limitiers and flux computation methods to quality of numerical solution are investigated. Six version of slope limiters are investigated: minmod, van Leer, van Albada, Kolgan, k-parameter and Colella — Woodward. Two methods of numerical flux computation also investigated: Lax — Friedrichs and Harten — Lax — van Leer. It is shown, that two pair of slope limiters leads to very similar numerical solution quality: minmod — Kolgan and van Leer — Colella — Woodward for the both version of numerical flux computation — Lax — Friedrichs and Harten — Lax — van Leer methods. For the Lax — Friedrichs method of numerical flux computation Colella–Woodward slope limiter give the best results and minmod the worse. For the Harten — Lax — van Leer method of numerical flux computation k-parameter slope limiter give the best results and Kolgan the worse. The L1relative error in density varying from 1.76% to 3.1% depending on the numerical flux computation method and kind of slope limiter. It is shown, that for all investigated variants of cSPH — TVD method numerical solution of Riemann problem very similar to exact. It is very interesting, that k-parameter slope limiter in combination with Lax — Friedrichs method of numerical flux computation leads to strange features near to contact discontinuity and rarefaction wave. But, in combination with Harten — Lax — van Leer method of numerical flux computation it leads to the best of all results without these strange features.
ISSN:2222-8896
2587-6325
2587-6902
DOI:10.15688/jvolsu1.2014.1.3