On symplectic invariants of planar 3-webs

The classical web geometry [1,3,4] studies invariants of foliation families with respect to pseudogroup of diffeomorphisms. Thus for the case of planar 3-webs the basic semi invariant is the Blaschke curvature, [2]. It is also curvature of the Chern connection [4] that are naturally associated with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trudy Meždunarodnogo geometričeskogo centra 2022-06, Vol.15 (1), p.66-74
1. Verfasser: Konovenko, Nadiia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classical web geometry [1,3,4] studies invariants of foliation families with respect to pseudogroup of diffeomorphisms. Thus for the case of planar 3-webs the basic semi invariant is the Blaschke curvature, [2]. It is also curvature of the Chern connection [4] that are naturally associated with a planar 3-web. In this paper we investigate invariants of planar 3-webs with respect to group of symplectic diffeomorphisms. We found the basic symplectic invariants of planar 3-webs that allow us to solve the symplectic equivalence problem for planar 3-webs in general position. The Lie-Tresse theorem, [4], gives the complete description of the field of rational symplectic differential invariants of planar 3-webs. We also give normal forms for homogeneous 3-webs, i.e. 3-webs having constant basic invariants.
ISSN:2072-9812
2409-8906
DOI:10.15673/tmgc.v15i1.2058