MAPAS AUTO-ORGANIZÁVEIS APLICADOS AO DESAGRUPAMENTO EM AMOSTRAGEM PREFERENCIAL

Os processos de amostragem na exploração mineral muitas vezes resultam em áreas preferencialmente amostradas, com a formação de agrupamentos, que podem surgir devido a alguns fatores, tais como condições de acessibilidade, valores de atributos e a estratégia de amostragem. Os agrupamentos afetam a i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Holos (Natal, RN) RN), 2023-12, Vol.8 (39)
Hauptverfasser: Khalil Ayache, Naim, Erlilikhman Medeiros Santos, Allan, Emílio Alves Nascimento, Arthur, Alves Braga de Castro, Silvania, De Fátima Santos da Silva, Denise
Format: Artikel
Sprache:por
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Os processos de amostragem na exploração mineral muitas vezes resultam em áreas preferencialmente amostradas, com a formação de agrupamentos, que podem surgir devido a alguns fatores, tais como condições de acessibilidade, valores de atributos e a estratégia de amostragem. Os agrupamentos afetam a inferência estatística da área. O objetivo deste artigo é propor uma nova abordagem para métodos de desagrupamento usando as redes de Kohonen, Self-Organizing Maps (SOM). As SOMs é um tipo de rede neural artificial usada para classificação não supervisionada. A metodologia atribui a cada amostra um peso para calcular a média desagrupada. A atribuição de peso para cada amostra em uma área é inversamente proporcional à área densamente amostrada. A média desagrupada é dada pela soma da multiplicação do peso com o valor do atributo de cada amostra. Portanto, a lógica de atribuição de pesos é semelhante ao método Cell Declustering, porém as SOMs identificam as áreas com margens não lineares, ao contrário do método Cell Declustering. Um estudo de caso é apresentado, usando o conjunto de dados de Walker Lake. A presente pesquisa não pretende substituir os métodos clássicos de desagrupamento, mas sim apresentar uma nova abordagem para um problema rotineiro na avaliação de reservas. Embora a matemática da técnica aplicada seja de fato complexa, os resultados podem ser promissores. Sampling processes in mineral exploration often result in preferentially sampled areas, with the formation of clustering. Some factors can cause areas to be preferentially sampled, accessibility conditions, attribute values, and the sampling strategy. Clustering impacts statistical inference of area. The objective of the present paper is to propose a new approach to declustering methods using Kohonen network, Self-Organizing Maps (SOM). SOM are a type of artificial neural network used for unsupervised classification. The methodology assigns each sample a weight to calculate the declustered mean. The assignment of weight to each sample in an area is inversely proportional to the densely sampled in area. The declustered mean is given by the sum of the weight multiplication with the attribute value of each sample. Therefore, the logic of assigning weights is similar to Cell Declustering method, but the delimitation of the densified areas is different. SOM identifies areas with non-linear margins, unlike the Cell Declustering method. A case study is presented, using the Walker Lake data set. The pre
ISSN:1807-1600
1807-1600
DOI:10.15628/holos.2023.15200