Tailoring multiscale porosity in 3D printed food-based natural fiber composites
Porous materials are pivotal in emerging fields like tissue engineering, scaffold, and drug delivery due to their distinctive porosity-driven functional properties. This paper describes how to achieve multiscale porosity in food-based composites through a thermally activated gelatinization process o...
Gespeichert in:
Veröffentlicht in: | MRS communications 2024-08, Vol.14 (4), p.553-560 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Porous materials are pivotal in emerging fields like tissue engineering, scaffold, and drug delivery due to their distinctive porosity-driven functional properties. This paper describes how to achieve multiscale porosity in food-based composites through a thermally activated gelatinization process of amylopectin molecules coupled with 3D printing. By controlling printing paths, macropores are engineered, while degree of gelatinization governs micro- and nanopores formation. Process-microstructure relationship reveals that longer preheating treatments at higher gelatinization temperatures significantly reduce micro-pore area by over twofold and nanopore surface area by over threefold. These results provide a promising route to fabricate food-based composite with tailorable microstructures.
Graphical abstract |
---|---|
ISSN: | 2159-6867 2159-6867 |
DOI: | 10.1557/s43579-024-00584-x |