Cubic GaN Heteroepitaxy on Thin-SiC-Covered Si(001)
We have investigated the growth conditions of cubic GaN (β-GaN) layers on very thin SiC-covered Si(001) by using gas-source molecular beam epitaxy as functions of SiC layer thickness, Ga-cell temperature and substrate temperature. Under the present SiC formation conditions on Si substrates by carbon...
Gespeichert in:
Veröffentlicht in: | MRS Internet journal of nitride semiconductor research 1999, Vol.4 (S1), p.155-160 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have investigated the growth conditions of cubic GaN (β-GaN) layers on very thin SiC-covered Si(001) by using gas-source molecular beam epitaxy as functions of SiC layer thickness, Ga-cell temperature and substrate temperature. Under the present SiC formation conditions on Si substrates by carbonization using C
2
H
2
gas, the SiC layers with the thickness between 2.5 and 4 nm result in the epitaxial growth of β-GaN on thus SiC-formed Si substrates. At the highest GaN growth rate of 110 nm/h ( a Ga-cell temperature of 950 °C), β-GaN layers grown at a substrate temperature of 700 °C show a nearly flat surface morphology and the fraction of included hexagonal GaN becomes negligible when compared to the results of β-GaN layers grown under other conditions of Ga-cell and substrate temperatures. Thus obtained β-GaN films have good performance in photoluminescence intensity although the FWHM of band-edge recombination peak is still wider (137 meV) than the reported values for the β-GaN on 3C-SiC and GaAs. |
---|---|
ISSN: | 1092-5783 1092-5783 |
DOI: | 10.1557/S1092578300002386 |