Norm-Peak Multilinear Forms on the Plane with the Rotated Supremum Norm

Let ≥ 2. A continuous -linear form on a Banach space is called norm-peak if there is a unique ( 1 , … , ) ∈ such that ║ 1 ║ = … = ║ ║ = 1 and for the multilinear operator norm it holds ‖ ‖ = | ( 1 , … , )|. Let 0 ≤ ≤ = ℝ 2 with the rotated supremum norm ‖( , )‖ (∞, ) = max {| cos + sin |, | sin − co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematica Pannonica 2024-12, Vol.30_NS4 (2), p.116-121
1. Verfasser: Kim, Sung Guen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue 2
container_start_page 116
container_title Mathematica Pannonica
container_volume 30_NS4
creator Kim, Sung Guen
description Let ≥ 2. A continuous -linear form on a Banach space is called norm-peak if there is a unique ( 1 , … , ) ∈ such that ║ 1 ║ = … = ║ ║ = 1 and for the multilinear operator norm it holds ‖ ‖ = | ( 1 , … , )|. Let 0 ≤ ≤ = ℝ 2 with the rotated supremum norm ‖( , )‖ (∞, ) = max {| cos + sin |, | sin − cos |}. In this note, we characterize all norm-peak multilinear forms on . As a corollary we characterize all norm-peak multilinear forms on = ℝ 2 with the -norm for = 1, ∞.
doi_str_mv 10.1556/314.2024.00012
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1556_314_2024_00012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1556_314_2024_00012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c792-6991f23333066ecc6126acbc40f4fb6f8bf8782507a4ba7b28d980e209364d323</originalsourceid><addsrcrecordid>eNotkMtOwzAURC0EEqWwZe0fSLh-O0tU0VKpQAXdW45jq4E8KjsR4u9JCrMZzSxGo4PQPYGcCCEfGOE5BcpzACD0Ai2o0jIDJeglWoCWIqNQwDW6SekTgINgaoE2r31ss723X_hlbIa6qTtvI15PbcJ9h4ejx_vGdh5_18PxHN_7wQ6-wh_jKfp2bPE8cYuugm2Sv_v3JTqsnw6r52z3ttmuHneZUwXNZFGQQNkkkNI7JwmV1pWOQ-ChlEGXQStNBSjLS6tKqqtCg59-M8krRtkS5X-zLvYpRR_MKdatjT-GgJkpmImCmSmYMwX2CwUXTfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Norm-Peak Multilinear Forms on the Plane with the Rotated Supremum Norm</title><source>DOAJ Directory of Open Access Journals</source><creator>Kim, Sung Guen</creator><creatorcontrib>Kim, Sung Guen</creatorcontrib><description>Let ≥ 2. A continuous -linear form on a Banach space is called norm-peak if there is a unique ( 1 , … , ) ∈ such that ║ 1 ║ = … = ║ ║ = 1 and for the multilinear operator norm it holds ‖ ‖ = | ( 1 , … , )|. Let 0 ≤ ≤ = ℝ 2 with the rotated supremum norm ‖( , )‖ (∞, ) = max {| cos + sin |, | sin − cos |}. In this note, we characterize all norm-peak multilinear forms on . As a corollary we characterize all norm-peak multilinear forms on = ℝ 2 with the -norm for = 1, ∞.</description><identifier>ISSN: 0865-2090</identifier><identifier>EISSN: 2786-0752</identifier><identifier>DOI: 10.1556/314.2024.00012</identifier><language>eng</language><ispartof>Mathematica Pannonica, 2024-12, Vol.30_NS4 (2), p.116-121</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c792-6991f23333066ecc6126acbc40f4fb6f8bf8782507a4ba7b28d980e209364d323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Sung Guen</creatorcontrib><title>Norm-Peak Multilinear Forms on the Plane with the Rotated Supremum Norm</title><title>Mathematica Pannonica</title><description>Let ≥ 2. A continuous -linear form on a Banach space is called norm-peak if there is a unique ( 1 , … , ) ∈ such that ║ 1 ║ = … = ║ ║ = 1 and for the multilinear operator norm it holds ‖ ‖ = | ( 1 , … , )|. Let 0 ≤ ≤ = ℝ 2 with the rotated supremum norm ‖( , )‖ (∞, ) = max {| cos + sin |, | sin − cos |}. In this note, we characterize all norm-peak multilinear forms on . As a corollary we characterize all norm-peak multilinear forms on = ℝ 2 with the -norm for = 1, ∞.</description><issn>0865-2090</issn><issn>2786-0752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAURC0EEqWwZe0fSLh-O0tU0VKpQAXdW45jq4E8KjsR4u9JCrMZzSxGo4PQPYGcCCEfGOE5BcpzACD0Ai2o0jIDJeglWoCWIqNQwDW6SekTgINgaoE2r31ss723X_hlbIa6qTtvI15PbcJ9h4ejx_vGdh5_18PxHN_7wQ6-wh_jKfp2bPE8cYuugm2Sv_v3JTqsnw6r52z3ttmuHneZUwXNZFGQQNkkkNI7JwmV1pWOQ-ChlEGXQStNBSjLS6tKqqtCg59-M8krRtkS5X-zLvYpRR_MKdatjT-GgJkpmImCmSmYMwX2CwUXTfA</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Kim, Sung Guen</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241218</creationdate><title>Norm-Peak Multilinear Forms on the Plane with the Rotated Supremum Norm</title><author>Kim, Sung Guen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c792-6991f23333066ecc6126acbc40f4fb6f8bf8782507a4ba7b28d980e209364d323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sung Guen</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematica Pannonica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sung Guen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Norm-Peak Multilinear Forms on the Plane with the Rotated Supremum Norm</atitle><jtitle>Mathematica Pannonica</jtitle><date>2024-12-18</date><risdate>2024</risdate><volume>30_NS4</volume><issue>2</issue><spage>116</spage><epage>121</epage><pages>116-121</pages><issn>0865-2090</issn><eissn>2786-0752</eissn><abstract>Let ≥ 2. A continuous -linear form on a Banach space is called norm-peak if there is a unique ( 1 , … , ) ∈ such that ║ 1 ║ = … = ║ ║ = 1 and for the multilinear operator norm it holds ‖ ‖ = | ( 1 , … , )|. Let 0 ≤ ≤ = ℝ 2 with the rotated supremum norm ‖( , )‖ (∞, ) = max {| cos + sin |, | sin − cos |}. In this note, we characterize all norm-peak multilinear forms on . As a corollary we characterize all norm-peak multilinear forms on = ℝ 2 with the -norm for = 1, ∞.</abstract><doi>10.1556/314.2024.00012</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0865-2090
ispartof Mathematica Pannonica, 2024-12, Vol.30_NS4 (2), p.116-121
issn 0865-2090
2786-0752
language eng
recordid cdi_crossref_primary_10_1556_314_2024_00012
source DOAJ Directory of Open Access Journals
title Norm-Peak Multilinear Forms on the Plane with the Rotated Supremum Norm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Norm-Peak%20Multilinear%20Forms%20on%20the%20Plane%20with%20the%20Rotated%20Supremum%20Norm&rft.jtitle=Mathematica%20Pannonica&rft.au=Kim,%20Sung%20Guen&rft.date=2024-12-18&rft.volume=30_NS4&rft.issue=2&rft.spage=116&rft.epage=121&rft.pages=116-121&rft.issn=0865-2090&rft.eissn=2786-0752&rft_id=info:doi/10.1556/314.2024.00012&rft_dat=%3Ccrossref%3E10_1556_314_2024_00012%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true