Norm-Peak Multilinear Forms on the Plane with the Rotated Supremum Norm
Let ≥ 2. A continuous -linear form on a Banach space is called norm-peak if there is a unique ( 1 , … , ) ∈ such that ║ 1 ║ = … = ║ ║ = 1 and for the multilinear operator norm it holds ‖ ‖ = | ( 1 , … , )|. Let 0 ≤ ≤ = ℝ 2 with the rotated supremum norm ‖( , )‖ (∞, ) = max {| cos + sin |, | sin − co...
Gespeichert in:
Veröffentlicht in: | Mathematica Pannonica 2024-09 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let ≥ 2. A continuous -linear form on a Banach space is called norm-peak if there is a unique ( 1 , … , ) ∈ such that ║ 1 ║ = … = ║ ║ = 1 and for the multilinear operator norm it holds ‖ ‖ = | ( 1 , … , )|.
Let 0 ≤ ≤ = ℝ 2 with the rotated supremum norm ‖( , )‖ (∞, ) = max {| cos + sin |, | sin − cos |}.
In this note, we characterize all norm-peak multilinear forms on . As a corollary we characterize all norm-peak multilinear forms on = ℝ 2 with the -norm for = 1, ∞. |
---|---|
ISSN: | 0865-2090 2786-0752 |
DOI: | 10.1556/314.2024.00012 |