Incidence Functions of the Exponential Divisor Poset
A positive integer is said to be an exponential divisor or an e-divisor of if ∣ for all prime divisors of . In addition, 1 is an e-divisor of 1. It is easy to see that ℤ + is a poset under the e-divisibility relation. Utilizing this observation we show that e-convolution of arithmetical functions is...
Gespeichert in:
Veröffentlicht in: | Mathematica Pannonica 2024-06, Vol.30_NS4 (1), p.105-109 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A positive integer
is said to be an exponential divisor or an e-divisor of
if
∣
for all prime divisors
of . In addition, 1 is an e-divisor of 1. It is easy to see that ℤ
+
is a poset under the e-divisibility relation. Utilizing this observation we show that e-convolution of arithmetical functions is an example of the convolution of incidence functions of posets. We also note that the identity, units and the Möbius function are preserved in this process. |
---|---|
ISSN: | 0865-2090 2786-0752 |
DOI: | 10.1556/314.2024.00011 |