Incidence Functions of the Exponential Divisor Poset

A positive integer is said to be an exponential divisor or an e-divisor of if ∣ for all prime divisors of . In addition, 1 is an e-divisor of 1. It is easy to see that ℤ + is a poset under the e-divisibility relation. Utilizing this observation we show that e-convolution of arithmetical functions is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematica Pannonica 2024-06, Vol.30_NS4 (1), p.105-109
1. Verfasser: Haukkanen, Pentti
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A positive integer is said to be an exponential divisor or an e-divisor of if ∣ for all prime divisors of . In addition, 1 is an e-divisor of 1. It is easy to see that ℤ + is a poset under the e-divisibility relation. Utilizing this observation we show that e-convolution of arithmetical functions is an example of the convolution of incidence functions of posets. We also note that the identity, units and the Möbius function are preserved in this process.
ISSN:0865-2090
2786-0752
DOI:10.1556/314.2024.00011