Examination of Non-Sinusoidal Current Drive in Direct Current excited Reluctance Motor

A Direct Current excited Reluctance Motor (DCRM) powered by three-phase sinusoidal currents is expected to have a higher torque density than a Switched Reluctance Motor (SRM) powered by unipolar currents because they can achieve a greater angular variation of magnetic co-energy even in the magnetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEJ JOURNAL OF INDUSTRY APPLICATIONS 2023/07/01, Vol.12(4), pp.755-762
Hauptverfasser: Koishi, Yudai, Yamaguchi, Akito, Goto, Hiroki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Direct Current excited Reluctance Motor (DCRM) powered by three-phase sinusoidal currents is expected to have a higher torque density than a Switched Reluctance Motor (SRM) powered by unipolar currents because they can achieve a greater angular variation of magnetic co-energy even in the magnetic saturation region. In this study, a non-sinusoidal current drive method for DCRM is proposed to increase torque. The non-sinusoidal current waveform is defined by a Fourier series function, and the optimum coefficients of the current function are solved using nonlinear programming. According to simulation results, the average torque of a DCRM driven by optimized non-sinusoidal current waveform is increased. Furthermore, the current balance between the armature coil and the excitation coil is investigated. As a result, the average torque is increased by up to about 25% when compared to conventinal sinusoidal current drive.
ISSN:2187-1094
2187-1108
DOI:10.1541/ieejjia.22008145