Blind Identification Using Higher Order Statistics and Eigendecomposition
In this paper we develop a new approach to identify noncausal AR models driven by non-Gaussian i. i. d input. Under a few moderate assumptions, we derive the necessary and sufficient conditions of rebuilding the parameters of the AR models from 2nd and higher order statistics. We show that the AR mo...
Gespeichert in:
Veröffentlicht in: | Denki Gakkai ronbunshi. C, Erekutoronikusu, joho kogaku, shisutemu Information and Systems, 1996/02/20, Vol.116(3), pp.319-324 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we develop a new approach to identify noncausal AR models driven by non-Gaussian i. i. d input. Under a few moderate assumptions, we derive the necessary and sufficient conditions of rebuilding the parameters of the AR models from 2nd and higher order statistics. We show that the AR model parameters are directly related to the solution of an eigenproblem. Based on the result, we present a method of AR model identification, applying eigenvector computation. The unique solution of AR parameters is guaranteed up to sign and linear phase ambiguity. Model order determination is not crucial in the method. If the order is overestimated, several equivalent AR models with different linear phases will be obtained. |
---|---|
ISSN: | 0385-4221 1348-8155 |
DOI: | 10.1541/ieejeiss1987.116.3_319 |