ADAPTIVE FREQUENCY OBSERVERS FOR TWO-PHASE AND SINGLE-PHASE HARMONIC SIGNALS

An adaptive observer for frequency and magnitude of two-phase symmetrical sinusoidal signal is presented. It is de-signed based on control concept of internal model approach. The observer guarantees global exponential estimation and high performance. If the information about one of the two-phase sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tehnìčna elektrodinamìka 2023-01, Vol.2023 (1), p.25-33
Hauptverfasser: Peresada, S.M., Nikonenko, Y.O., Kovbasa, S.M., Kuznietsov, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An adaptive observer for frequency and magnitude of two-phase symmetrical sinusoidal signal is presented. It is de-signed based on control concept of internal model approach. The observer guarantees global exponential estimation and high performance. If the information about one of the two-phase signal components is missing, a modified structure of the observer is proposed. This case is equivalent to the measurement of a single-phase sinusoidal signal. The proper-ties of local exponential stability of single-phase signal observer are proved using Lyapunov’s conversion theorem for disturbed systems. The robustness of the two-phase signal observer with respect to additive disturbances (high-frequency noise, varying frequency) is confirmed by simulation results. It is shown that the observer estimation speed can be arbitrarily increased by increasing the feedback gains. A method for single-phase harmonic signal frequency observer tuning is developed, which ensures the expansion of the stability region. References 14, figures 7.
ISSN:1607-7970
2218-1903
DOI:10.15407/techned2023.01.025