Збіжність методу операторної екстраполяції
Одним з популярних напрямів сучасного прикладного нелінійного аналізу є дослідження варіаційних нерівностей та розробка методів апроксимації їх розв’язків. Багато актуальних проблем дослідження операцій, оптимального керування та математичної фізики можуть бути записані у формі варіаційних нерівност...
Gespeichert in:
Veröffentlicht in: | Dopovidi Nacionalʹnoï akademiï nauk Ukraïni 2021-08 (4), p.28-35 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Одним з популярних напрямів сучасного прикладного нелінійного аналізу є дослідження варіаційних нерівностей та розробка методів апроксимації їх розв’язків. Багато актуальних проблем дослідження операцій, оптимального керування та математичної фізики можуть бути записані у формі варіаційних нерівностей. Негладкі задачі оптимізації можна ефективно розв’язувати, якщо їх переформулювати як сідлові задачі, а до останніх застосувати сучасні наближені алгоритми розв’язання варіаційних нерівностей. З появою генеруючих змагальних нейронних мереж (generative adversarial network, GAN) стійкий інтерес до застосування та дослідження ітераційних алгоритмів розв’язання варіаційних нерівностей виник і в середовищі фахівців в галузі машинного навчання. Дана робота присвячена дослідженню двох нових наближених алгоритмів з брегманівською проєкцією для розв’язання варіаційних нерівностей в гільбертовому просторі. Перший алгоритм, який ми називаємо алгоритмом операторної екстраполяції, отриманий заміною в методі Маліцького—Тама евклідової метрики на дивергенцію Брегмана. Привабливою рисою алгоритму є всього одне обчислення на ітераційному кроці проєкції Брегмана на допустиму множину. Другий алгоритм є адаптивним варіантом першого, де використовується правило поновлення величини кроку, що не вимагає знання ліпшицевих констант і обчислень значень оператора в додаткових точках. Для варіаційних нерівностей з псевдомонотонними, ліпшицевими та секвенційно слабко неперервними операторами, що діють в гільбертовому просторі, доведені теореми про слабку збіжність методів. |
---|---|
ISSN: | 1025-6415 2518-153X |
DOI: | 10.15407/dopovidi2021.04.028 |