Збіжність методу операторної екстраполяції

Одним з популярних напрямів сучасного прикладного нелінійного аналізу є дослідження варіаційних нерівностей та розробка методів апроксимації їх розв’язків. Багато актуальних проблем дослідження операцій, оптимального керування та математичної фізики можуть бути записані у формі варіаційних нерівност...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dopovidi Nacionalʹnoï akademiï nauk Ukraïni 2021-08 (4), p.28-35
Hauptverfasser: Семенов, В.В., Сірик, Д.С., Харьков, О.С.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Одним з популярних напрямів сучасного прикладного нелінійного аналізу є дослідження варіаційних нерівностей та розробка методів апроксимації їх розв’язків. Багато актуальних проблем дослідження операцій, оптимального керування та математичної фізики можуть бути записані у формі варіаційних нерівностей. Негладкі задачі оптимізації можна ефективно розв’язувати, якщо їх переформулювати як сідлові задачі, а до останніх застосувати сучасні наближені алгоритми розв’язання варіаційних нерівностей. З появою генеруючих змагальних нейронних мереж (generative adversarial network, GAN) стійкий інтерес до застосування та дослідження ітераційних алгоритмів розв’язання варіаційних нерівностей виник і в середовищі фахівців в галузі машинного навчання. Дана робота присвячена дослідженню двох нових наближених алгоритмів з брегманівською проєкцією для розв’язання варіаційних нерівностей в гільбертовому просторі. Перший алгоритм, який ми називаємо алгоритмом операторної екстраполяції, отриманий заміною в методі Маліцького—Тама евклідової метрики на дивергенцію Брегмана. Привабливою рисою алгоритму є всього одне обчислення на ітераційному кроці проєкції Брегмана на допустиму множину. Другий алгоритм є адаптивним варіантом першого, де використовується правило поновлення величини кроку, що не вимагає знання ліпшицевих констант і обчислень значень оператора в додаткових точках. Для варіаційних нерівностей з псевдомонотонними, ліпшицевими та секвенційно слабко неперервними операторами, що діють в гільбертовому просторі, доведені теореми про слабку збіжність методів.
ISSN:1025-6415
2518-153X
DOI:10.15407/dopovidi2021.04.028