Simple and Visual Algorithm for Factorizing Integer Numbers

An iterative algorithm for decomposing an integer composite number C into prime factors X1 and X2 is proposed in which the properties of Vieta’s theorem are used for the reduced quadratic equations X2+B·X·C = 0, when the first approximation in iterative computation is taken equal to the square root...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Control systems and computers (Online) 2022 (2 (298)), p.70-76
1. Verfasser: Bilyk, Viktor K.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An iterative algorithm for decomposing an integer composite number C into prime factors X1 and X2 is proposed in which the properties of Vieta’s theorem are used for the reduced quadratic equations X2+B·X·C = 0, when the first approximation in iterative computation is taken equal to the square root of the composite number C, then is С, and B is equal to the rounded up to a larger integer from the number С, that is, B = C. In this case, the calculations are carried out by linearly increasing the approximations by one.
ISSN:2706-8145
2706-8153
DOI:10.15407/csc.2022.02.070