Classification of White Blood Cell Abnormalities for Early Detection of Myeloproliferative Neoplasms Syndrome Based on K-Nearest Neighborr

The myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell disorders characterized by dysregulated proliferation and expansion of one or more of the myeloid lineages. The initial symptoms of MPN is a bone marrow abnormalities when producing red blood cells, white blood cells and plat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific Journal of Informatics 2020-06, Vol.7 (1), p.136-142
Hauptverfasser: Fitri, Zilvanhisna Emka, Syahputri, Lindri Nalentine Yolanda, Imron, Arizal Mujibtamala Nanda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell disorders characterized by dysregulated proliferation and expansion of one or more of the myeloid lineages. The initial symptoms of MPN is a bone marrow abnormalities when producing red blood cells, white blood cells and platelets in large numbers and uncontrolled. An automatic and accurate white blood cell abnormality classification system is needed. This research uses digital image processing techniques such as conversion to the modified CIELab color space, segmentation techniques based on threshold values and feature extraction processes that produce four morphological features consisting of area, perimeter, metric and compactness. then the four features become input to the K-Nearest Neighborr (KNN) method. The testing process is based on variations in the value of K to get the best accuracy percentage of 94.3% tested on 159 test data.
ISSN:2407-7658
2460-0040
DOI:10.15294/sji.v7i1.24372