Implementasi Vector Space Model dalam Pembangkitan Frequently Asked Questions Otomatis dan Solusi yang Relevan untuk Keluhan Pelanggan

Salah satu keunggulan dari sebuah lembaga/unit pelayanan adalah seberapa cepat dan akurat dalam menangani keluhan pelanggan. Keluhan yang disampaikan pelanggan umumnya memiliki kesamaan dengan keluhan-keluhan sebelumnya, sehingga solusi dari keluhan baru dapat didasarkan pada solusi yang diberikan p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific Journal of Informatics 2016-02, Vol.2 (2), p.111-121
Hauptverfasser: Aziz, Abdul, Saptono, Ristu, Suryajaya, Kartika Permatasari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Salah satu keunggulan dari sebuah lembaga/unit pelayanan adalah seberapa cepat dan akurat dalam menangani keluhan pelanggan. Keluhan yang disampaikan pelanggan umumnya memiliki kesamaan dengan keluhan-keluhan sebelumnya, sehingga solusi dari keluhan baru dapat didasarkan pada solusi yang diberikan pada keluhan lama. Vector Space Model (VSM) merupakan salah satu model yang digunakan untuk mengetahui kemiripan dokumen, yang digunakan dalam membangkitkan FAQ otomatis. Pembobotan term dilakukan dengan teknik Term Frequency-Inverse Document Frequency (TF-IDF). Kombinasi notasi TF-IDF yang dibandingkan adalah TF-IDF itu sendiri, modifikasi logaritmik TF dan modifikasi logaritmik IDF. Similarity measure yang digunakan adalah cosine similarity. Hasil dari penelitian ini adalah algoritma VSM dengan pembobotan TF-IDF dapat digunakan untuk membangkitkan FAQ otomatis dan solusi yang relevan. Berdasarkan hasil perhitungan accuracy pada masing- masing percobaan dapat disimpulkan bahwa pada threshold 0.5, kombinasi notasi TF-IDF yang memiliki nilai rata-rata accuracy dan precision tertinggi adalah modifikasi pertama, yaitu masing-masing sebesar 62.09% dan 55.15%. Sedangkan untuk threshold 0.65 yang memiliki nilai rata-rata accuracy dan precision tertinggi adalah TF-IDF, yaitu masing-masing sebesar 83.18% dan 68.35%. Selain itu percobaan dengan menggunakan 171 data, TF-IDF dan threshold 0.65 dapat membangkitkan 27 FAQ, yaitu dengan persentase 70.37% relevan.
ISSN:2407-7658
2460-0040
DOI:10.15294/sji.v2i2.5076