Synthesis and characterization of NaGdF4:Nd3+@Ni Core@Shell nanoparticles with potential applications in anaerobic digestion

The NaGdF4:Nd3+@Ni core@shell nanoparticles were synthesized and characterized. First, core@shell nanoparticles were synthesized using a solvothermal method to obtain the NaGdF4:Nd3+ core with hexagonal phase; subsequently, a chemical reduction was performed to stimulate the growth of the Ni shell w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digest Journal of Nanomaterials and Biostructures 2023-09, Vol.18 (3), p.1093-1103
Hauptverfasser: Aguilar-Moreno, G. S., Espinosa-Solares, T., Santos-Gaspar, J. M., Montes-Ramírez, E., Aguilar-Méndez, M. Á., Martinez-Maestro, L., Navarro-Cerón, E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The NaGdF4:Nd3+@Ni core@shell nanoparticles were synthesized and characterized. First, core@shell nanoparticles were synthesized using a solvothermal method to obtain the NaGdF4:Nd3+ core with hexagonal phase; subsequently, a chemical reduction was performed to stimulate the growth of the Ni shell with cubic phase. NaGdF4:Nd3+@Ni nanoparticles were characterized by transmission electron microscope, zeta potential, X-ray diffraction, scattered energy spectroscopy, UV-Vis, and photoluminescence emission spectra. The nanoparticles were round in shape, with mean sizes around 250 nm. The core@shell nanoparticles presented a homogenous composition and good stability. The photoluminescent emission of the nanoparticles was recorded at 1059 nm in the nearinfrared spectral range; this band corresponds to the 4 F3/2→4 I11/2 radiative transitions of Nd3+ ions. The synthesized nanoparticles, being hydrophilic, have potential for use in different areas, one of them could be in anaerobic digestion.
ISSN:1842-3582
1842-3582
DOI:10.15251/DJNB.2023.183.1093