Synthesis and characterization of NaGdF4:Nd3+@Ni Core@Shell nanoparticles with potential applications in anaerobic digestion
The NaGdF4:Nd3+@Ni core@shell nanoparticles were synthesized and characterized. First, core@shell nanoparticles were synthesized using a solvothermal method to obtain the NaGdF4:Nd3+ core with hexagonal phase; subsequently, a chemical reduction was performed to stimulate the growth of the Ni shell w...
Gespeichert in:
Veröffentlicht in: | Digest Journal of Nanomaterials and Biostructures 2023-09, Vol.18 (3), p.1093-1103 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The NaGdF4:Nd3+@Ni core@shell nanoparticles were synthesized and characterized. First, core@shell nanoparticles were synthesized using a solvothermal method to obtain the NaGdF4:Nd3+ core with hexagonal phase; subsequently, a chemical reduction was performed to stimulate the growth of the Ni shell with cubic phase. NaGdF4:Nd3+@Ni nanoparticles were characterized by transmission electron microscope, zeta potential, X-ray diffraction, scattered energy spectroscopy, UV-Vis, and photoluminescence emission spectra. The nanoparticles were round in shape, with mean sizes around 250 nm. The core@shell nanoparticles presented a homogenous composition and good stability. The photoluminescent emission of the nanoparticles was recorded at 1059 nm in the nearinfrared spectral range; this band corresponds to the 4 F3/2→4 I11/2 radiative transitions of Nd3+ ions. The synthesized nanoparticles, being hydrophilic, have potential for use in different areas, one of them could be in anaerobic digestion. |
---|---|
ISSN: | 1842-3582 1842-3582 |
DOI: | 10.15251/DJNB.2023.183.1093 |