Bayes’sche Consensus-Regelung in dezentralen vernetzten Systemen / Bayesian Consensus Control in Decentralized Networked Systems
Der Beitrag befasst sich mit vernetzten dynamischen Multi-Agenten-Systemen (MAS), die Konsens über ihre Zustände bei unsicherer Datenübertragung und Sensorrauschen erreichen sollen. Dazu wird eine Analogie zwischen dem klassischen Consensus-Protokoll und dem Gauß’schen Belief Propagation hergestellt...
Gespeichert in:
Veröffentlicht in: | Automatisierungstechnik : AT 2013-08, Vol.61 (8), p.583-595 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Der Beitrag befasst sich mit vernetzten dynamischen Multi-Agenten-Systemen (MAS), die Konsens über ihre Zustände bei unsicherer Datenübertragung und Sensorrauschen erreichen sollen. Dazu wird eine Analogie zwischen dem klassischen Consensus-Protokoll und dem Gauß’schen Belief Propagation hergestellt. Das Consensus-Problem wird als stochastischer Prozess modelliert, wodurch Unsicherheiten über die Anfangszustände und Übertragungsunsicherheiten explizit bei der Modellierung berücksichtigt werden können. Es werden die Voraussetzungen für dezentrale Inferenz hergeleitet, zwei dezentrale approximative Inferenz-Protokolle entworfen und ein Gauß’sches Consensus-Protokoll realisiert. Weiterhin wird der Zusammenhang zwischen Kommunikationsdichte und Approximationsfehler dargelegt. Schließlich wird gezeigt, dass die Hinzunahme von Messunsicherheiten zu einem dezentralen Entwurf eines Kalman-Filters für Consensus-Systeme führt
This paper deals with networked, dynamical multi-agent systems (MAS) trying to reach consensus about their states subject to uncertain data transfer and noisy measurements. For this, an analogy between the consensus protocol and Gaussian belief propagation is established. Modeling the consensus problem as a stochastic process, uncertainties in the initial states and in the information flow can be considered. The requirements for decentral inference are derived, two decentral approximative inference protocols are developed and a Gaussian consensus protocol is realized. Furthermore, the dependency between communication density and approximation error is presented. Finally, it is shown that taking measurement noise into account leads to a decentral design of a Kalman filter for consensus systems |
---|---|
ISSN: | 0178-2312 2196-677X |
DOI: | 10.1524/auto.2013.1036 |