Prediction of bimodal monsoonal rainfall in the central dry zone of Myanmar using teleconnections with global sea surface temperatures
In the central dry zone of Myanmar, the mean annual rainfall is less than 1000 mm. Although rainfed agriculture is commonly practiced there, the feasibility of rainfed farming is compromised by the large fluctuations of rainfall and the frequent occurrence of dry years. The monthly distribution of r...
Gespeichert in:
Veröffentlicht in: | Geofizika (Zagreb, Croatia) Croatia), 2022-01, Vol.39 (1), p.1-20 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the central dry zone of Myanmar, the mean annual rainfall is less than 1000 mm. Although rainfed agriculture is commonly practiced there, the feasibility of rainfed farming is compromised by the large fluctuations of rainfall and the frequent occurrence of dry years. The monthly distribution of rainfall follows a bimodal pattern. The intensity of the monsoonal rainfall from May to October is characterized by two peaks, an early peak (May-June) and a late peak (August–October), separated by the inter-monsoon (July). The return times of dry and wet years make management of rainfed agriculture problematic. There is very little correlation between the early and late monsoonal rainfall (r=–0.257). However, monsoonal rainfall is teleconnected to sea surface temperatures (SSTs) in certain areas of the Pacific Ocean in real time. Furthermore, at lag times of 6–9 months, there are teleconnections between the early monsoonal, inter-monsoonal, and late monsoonal rainfall and SSTs in certain areas of the Indian Ocean and Atlantic Ocean. We used an Elman artificial neural network model to predict early monsoonal, inter-monsoonal, and late monsoonal rainfall based on teleconnections with SSTs in the Indian and Atlantic oceans 6–9 months before the rainfall occurred. The correlation coefficient between the predicted and observed rainfall exceeded 0.7 in all three cases.
U središnjem dijelu sušne zone Mianmara prosječna je godišnja količina oborine manja od 1000 mm. Poljoprivreda se ondje uobičajeno oslanja na dostupnost oborinske vode te je ona stoga značajno ugrožena njenim velikim oscilacijama i čestim pojavama sušnih godina. Mjesečna raspodjela oborine ima bimodalni karakter. Obilježje intenziteta monsunske oborine od svibnja do listopada je pojava dvaju maksimuma: rani (svibanj–lipanj) i kasni (kolovoz–listopad) koji su razdvojeni među-monsunom (srpanj). Upravljanje poljoprivredom koja se oslanja na oborinu je problematično zbog povratnih perioda sušnih i vlažnih godina. Postoji vrlo slaba korelacija između rane i kasne monsunske oborine (r = −0,257). Međutim, uočava se daljinska povezanost monsunske oborine s površinskim temperaturama mora (SST) određenih područja Tihog oceana. Nadalje, postoji i povezanost između rane monsunske, među-monsunske i kasne monsunske oborine i SST-a određenih područja Indijskog oceana i Atlantskog oceana s odmakom od 6 do 9 mjeseci. Koristili smo Elmanov model umjetne neuronske mreže za predviđanje rane monsunske, među-monsunske i |
---|---|
ISSN: | 0352-3659 1846-6346 |
DOI: | 10.15233/gfz.2022.39.9 |