Evaluación de la incertidumbre asociada a las proyecciones de precipitación considerando el cambio climático en la cuenca del río Turbio de Guanajuato
El cambio climático es el gran desafío del siglo XXI, cada año se incrementa la frecuencia y la magnitud de los fenómenos meteorológicos. Por lo tanto, resulta de gran importancia pronosticar las variables asociadas a este fenómeno, como la precipitación. Sin embargo, determinar e incorporar la ince...
Gespeichert in:
Veröffentlicht in: | Acta universitaria 2022-09, Vol.32, p.1-15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng ; por |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | El cambio climático es el gran desafío del siglo XXI, cada año se incrementa la frecuencia y la magnitud de los fenómenos meteorológicos. Por lo tanto, resulta de gran importancia pronosticar las variables asociadas a este fenómeno, como la precipitación. Sin embargo, determinar e incorporar la incertidumbre asociada a las proyecciones de variables meteorológicas es un problema que requiere de mayor investigación. Es por ello que este artículo se enfoca a evaluar la incertidumbre a través del método de Monte Carlo, incluyendo las proyecciones de precipitaciones de los modelos de circulación general y el downscaling con redes neuronales artificiales (RNA). Los resultados obtenidos muestran que el downscaling con las RNA reduce significativamente la incertidumbre a las proyecciones de los modelos de circulación general. Se observa también una tendencia a subestimar las precipitaciones en la mayoría de las estaciones y un sesgo en los outputs respecto a la serie histórica. |
---|---|
ISSN: | 0188-6266 2007-9621 2007-9621 |
DOI: | 10.15174/au.2022.3433 |