Cyclic Adenosine Monophosphate (cAMP)-Induced Histone Hyperacetylation Contributes to its Antiproliferative and Differentiation-Inducing Activities

Histone acetylation is linked to the control of chromatin remodeling, which is involved in cell growth, proliferation, and differentiation. It is not fully understood whether cyclic adenosine monophosphate (cAMP), a representative differentiation-inducing molecule, is able to modulate histone acetyl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für Naturforschung C. A journal of biosciences 2012-04, Vol.67 (3), p.222-232
Hauptverfasser: Yoo, Seungwan, Lee, Yong Gyu, Kim, Ji Hye, Byeon, Se Eun, Rho, Ho Sik, Cho, Jae Youl, Hong, Sungyoul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Histone acetylation is linked to the control of chromatin remodeling, which is involved in cell growth, proliferation, and differentiation. It is not fully understood whether cyclic adenosine monophosphate (cAMP), a representative differentiation-inducing molecule, is able to modulate histone acetylation as part of its anticancer activity. In the present study, we aimed to address this issue using cell-permeable cAMP, i.e. dibutyryl cAMP (dbcAMP) and C6 glioma cells. As reported previously, under the conditions of our studies, treatment with dbcAMP clearly arrested C6 cell proliferation and altered their morphology. Its antiproliferative and differentiation-inducing activity in C6 glioma cells involved upregulation of p21 , p27 , glial fibrillary acidic protein (GFAP), and Cx43, as well as downregulation of vimentin. Furthermore, dbcAMP modulated the phosphorylation of ERK and Akt in a time-dependent manner and altered the colocalization pattern of phospho-Src and the actin cytoskeleton. Interestingly, dbcAMP upregulated the enzyme activity of histone acetyltransferase (HAT) and, in parallel, enhanced cellular acetyllysine levels. Finally, the hyperacetylation- inducing compound, sodium butyrate (NaB), a histone deacetylase (HDAC) inhibitor, displayed similar anticancer activity to dbcAMP. Therefore, our data suggest that antiproliferative and differentiation-inducing activities of dbcAMP may be generated by its enhanced hyperacetylation function
ISSN:0939-5075
1865-7125
DOI:10.1515/znc-2012-3-415