Distribution of Leading Digits of Numbers

Applying the theory of distribution functions of sequences we find the relative densities of the first digits also for sequences not satisfying Benford’s law. Especially for sequence = , = 1, 2, . . . and , = 1, 2, . . ., where is the increasing sequence of all primes and > 0 is an arbitrary real...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Uniform distribution theory 2016-06, Vol.11 (1), p.23-45
Hauptverfasser: Ohkubo, Yukio, Strauch, Oto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Applying the theory of distribution functions of sequences we find the relative densities of the first digits also for sequences not satisfying Benford’s law. Especially for sequence = , = 1, 2, . . . and , = 1, 2, . . ., where is the increasing sequence of all primes and > 0 is an arbitrary real. We also add rate of convergence to such densities.
ISSN:2309-5377
1336-913X
2309-5377
DOI:10.1515/udt-2016-0003