Distribution of Leading Digits of Numbers
Applying the theory of distribution functions of sequences we find the relative densities of the first digits also for sequences not satisfying Benford’s law. Especially for sequence = , = 1, 2, . . . and , = 1, 2, . . ., where is the increasing sequence of all primes and > 0 is an arbitrary real...
Gespeichert in:
Veröffentlicht in: | Uniform distribution theory 2016-06, Vol.11 (1), p.23-45 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Applying the theory of distribution functions of sequences we find the relative densities of the first digits also for sequences
not satisfying Benford’s law. Especially for sequence
=
,
= 1, 2, . . . and
,
= 1, 2, . . ., where
is the increasing sequence of all primes and
> 0 is an arbitrary real. We also add rate of convergence to such densities. |
---|---|
ISSN: | 2309-5377 1336-913X 2309-5377 |
DOI: | 10.1515/udt-2016-0003 |