Multiscale SUR Estimation of Systematic Risk

We propose a multiscale version of the seemingly unrelated regressions model, based on wavelet transform-based time series observations. Each regression equation refers to a different time scale, which enables the use of across-scale error covariances in the feasible GLS estimation procedure for eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in nonlinear dynamics and econometrics 2024-05
1. Verfasser: Michis, Antonis A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a multiscale version of the seemingly unrelated regressions model, based on wavelet transform-based time series observations. Each regression equation refers to a different time scale, which enables the use of across-scale error covariances in the feasible GLS estimation procedure for efficiency gains. We demonstrate the advantages of the proposed method over OLS with two studies: an empirical study using stock market returns for the main US industrial sectors and a detailed Monte Carlo simulation study with alternative wavelet filters. We also provide explanations for the suitability of the proposed method for estimating long-term systematic risk.
ISSN:1081-1826
1558-3708
DOI:10.1515/snde-2023-0017