Multiscale SUR Estimation of Systematic Risk
We propose a multiscale version of the seemingly unrelated regressions model, based on wavelet transform-based time series observations. Each regression equation refers to a different time scale, which enables the use of across-scale error covariances in the feasible GLS estimation procedure for eff...
Gespeichert in:
Veröffentlicht in: | Studies in nonlinear dynamics and econometrics 2024-05 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a multiscale version of the seemingly unrelated regressions model, based on wavelet transform-based time series observations. Each regression equation refers to a different time scale, which enables the use of across-scale error covariances in the feasible GLS estimation procedure for efficiency gains. We demonstrate the advantages of the proposed method over OLS with two studies: an empirical study using stock market returns for the main US industrial sectors and a detailed Monte Carlo simulation study with alternative wavelet filters. We also provide explanations for the suitability of the proposed method for estimating long-term systematic risk. |
---|---|
ISSN: | 1081-1826 1558-3708 |
DOI: | 10.1515/snde-2023-0017 |