Plasmonic Nanocavities-based Aperiodic crystal for Protein-Protein Recognition SERS sensors
The revelation of protein-protein interactions is one of the main preoccupations in the field of proteomics. Nanoplasmonics has emerged as an attractive surface-based technique because of its ability to sense protein binding under physiological conditions in a label-free manner. Here, we present a d...
Gespeichert in:
Veröffentlicht in: | Optical Data Processing and Storage 2017-06, Vol.3 (1), p.54-60 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The revelation of protein-protein interactions is one of the main preoccupations in the field of proteomics. Nanoplasmonics has emerged as an attractive surface-based technique because of its ability to sense protein binding under physiological conditions in a label-free manner. Here, we present a detailed experimental study of the use of aperiodic photonic nanocavities for plasmonic Surface Enhanced Raman Scattering (SERS) protein detection and recognition. The plasmonic crystal is designed on a 2D Thue-Morse array configuration. The SERS nanosensor is coated with a proper self-assembled monolayer to covalently bind Bovine Serum Albumin that is a well known model to study biological (specifically, protein) systems. The performance of the nanosensor is assessed by recording a new Raman (SERS) peak in the fingerprint region and by a giant enhancement of the SERS signal intensity, both reported and discussed. |
---|---|
ISSN: | 2084-8862 2084-8862 |
DOI: | 10.1515/odps-2017-0007 |