Ultrabright single-photon emission from germanium-vacancy zero-phonon lines: deterministic emitter-waveguide interfacing at plasmonic hot spots

Striving for nanometer-sized solid-state single-photon sources, we investigate atom-like quantum emitters based on single germanium-vacancy (GeV) centers isolated in crystalline nanodiamonds (NDs). Cryogenic characterization indicated symmetry-protected and bright (>10 counts/s with off-resonance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanophotonics (Berlin, Germany) Germany), 2020-04, Vol.9 (4), p.953-962
Hauptverfasser: Siampour, Hamidreza, Wang, Ou, Zenin, Vladimir A., Boroviks, Sergejs, Siyushev, Petr, Yang, Yuanqing, Davydov, Valery A., Kulikova, Liudmila F., Agafonov, Viatcheslav N., Kubanek, Alexander, Mortensen, N. Asger, Jelezko, Fedor, Bozhevolnyi, Sergey I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Striving for nanometer-sized solid-state single-photon sources, we investigate atom-like quantum emitters based on single germanium-vacancy (GeV) centers isolated in crystalline nanodiamonds (NDs). Cryogenic characterization indicated symmetry-protected and bright (>10 counts/s with off-resonance excitation) zero-phonon optical transitions with up to 6-fold enhancement in energy splitting of their ground states as compared to that found for GeV centers in bulk diamonds (i.e. up to 870 GHz in highly strained NDs vs. 150 GHz in bulk). Utilizing lithographic alignment techniques, we demonstrate an integrated nanophotonic platform for deterministic interfacing plasmonic waveguides with isolated GeV centers in NDs, which enables 10-fold enhancement of single-photon decay rates along with the emission direction control by judiciously designing and positioning a Bragg reflector. This approach allows one to realize the unidirectional emission from single-photon dipolar sources, thereby opening new perspectives for the realization of quantum optical integrated circuits.
ISSN:2192-8606
2192-8614
2192-8614
DOI:10.1515/nanoph-2020-0036