On the continuity properties of the L p balls
In this paper the right upper semicontinuity at p = 1 {p=1} and continuity at p = ∞ {p=\infty} of the set-valued map p → B Ω , , p ( r ) {p\rightarrow B_{\Omega,\mathcal{X},p}(r)} , p ∈ [ 1 , ∞ ] {p\in[1,\infty]} , are studied where B Ω , , p ( r ) {B_{\Omega,\mathcal{X},p}(r)} is the closed bal...
Gespeichert in:
Veröffentlicht in: | Journal of applied analysis 2023-06, Vol.29 (1), p.151-159 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper the right upper semicontinuity at
p
=
1
{p=1}
and continuity at
p
=
∞
{p=\infty}
of the set-valued map
p
→
B
Ω
,
,
p
(
r
)
{p\rightarrow B_{\Omega,\mathcal{X},p}(r)}
,
p
∈
[
1
,
∞
]
{p\in[1,\infty]}
, are studied where
B
Ω
,
,
p
(
r
)
{B_{\Omega,\mathcal{X},p}(r)}
is the closed ball of the space
L
p
(
Ω
,
Σ
,
μ
;
)
{L_{p}(\Omega,\Sigma,\mu;\mathcal{X})}
centered at the origin with radius
r
,
(
Ω
,
Σ
,
μ
)
{(\Omega,\Sigma,\mu)}
is a finite and positive measure space,
{\mathcal{X}}
is a separable Banach space. It is proved that the considered set-valued map is right upper semicontinuous at
p
=
1
{p=1}
and continuous at
p
=
∞
{p=\infty}
. An application of the obtained results to the set of integrable outputs of the input-output system described by the Urysohn-type integral operator is discussed. |
---|---|
ISSN: | 1425-6908 1869-6082 |
DOI: | 10.1515/jaa-2022-1008 |