On the continuity properties of the L p balls

In this paper the right upper semicontinuity at p = 1 {p=1} and continuity at p = ∞ {p=\infty} of the set-valued map p → B Ω , , p ⁢ ( r ) {p\rightarrow B_{\Omega,\mathcal{X},p}(r)} , p ∈ [ 1 , ∞ ] {p\in[1,\infty]} , are studied where B Ω , , p ⁢ ( r ) {B_{\Omega,\mathcal{X},p}(r)} is the closed bal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied analysis 2023-06, Vol.29 (1), p.151-159
Hauptverfasser: Huseyin, Nesir, Huseyin, Anar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper the right upper semicontinuity at p = 1 {p=1} and continuity at p = ∞ {p=\infty} of the set-valued map p → B Ω , , p ⁢ ( r ) {p\rightarrow B_{\Omega,\mathcal{X},p}(r)} , p ∈ [ 1 , ∞ ] {p\in[1,\infty]} , are studied where B Ω , , p ⁢ ( r ) {B_{\Omega,\mathcal{X},p}(r)} is the closed ball of the space L p ⁢ ( Ω , Σ , μ ; ) {L_{p}(\Omega,\Sigma,\mu;\mathcal{X})} centered at the origin with radius r , ( Ω , Σ , μ ) {(\Omega,\Sigma,\mu)} is a finite and positive measure space, {\mathcal{X}} is a separable Banach space. It is proved that the considered set-valued map is right upper semicontinuous at p = 1 {p=1} and continuous at p = ∞ {p=\infty} . An application of the obtained results to the set of integrable outputs of the input-output system described by the Urysohn-type integral operator is discussed.
ISSN:1425-6908
1869-6082
DOI:10.1515/jaa-2022-1008