Recurrent Neural Adaptive Control of Nonlinear Oscillatory Systems Using a Complex-valued Levenberg-Marquardt Learning Algorithm

In this work, a Recursive Levenberg-Marquardt learning algorithm in the complex domain is developed and applied in the training of two adaptive control schemes composed by Complex-Valued Recurrent Neural Networks. Furthermore, we apply the identification and both control schemes for a particular cas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information technologies and control 2015-06, Vol.13 (1), p.10-24
Hauptverfasser: Baruch, Ieroham, Reynaud, Edmundo P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, a Recursive Levenberg-Marquardt learning algorithm in the complex domain is developed and applied in the training of two adaptive control schemes composed by Complex-Valued Recurrent Neural Networks. Furthermore, we apply the identification and both control schemes for a particular case of nonlinear, oscillatory mechanical plant to validate the performance of the adaptive neural controller and the learning algorithm. The comparative simulation results show the better performance of the newly proposed Complex-Valued Recursive Levenberg-Marquardt learning algorithm over the gradient-based recursive Back-propagation one.
ISSN:1312-2622
2367-5357
1312-2622
DOI:10.1515/itc-2016-0007