Modeling of texture evolution in copper under equal channel angular pressing

Texture evolution was analyzed with the full-constraint Taylor model for an idealized perfectly plastic face-centered cubic material as well as for real, strain-hardening copper subjected to equal channel angular pressing (ECAP). For the idealized material, the stress in the plastically deformed par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of materials research 2022-02, Vol.94 (11), p.1189-1198
Hauptverfasser: Baik, Seung Chul, Estrin, Yuri, Hellmig, Ralph Jörg, Jeong, Hyo-Tae, Brokmeier, H.-G., Kime, Hyoung Seop
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Texture evolution was analyzed with the full-constraint Taylor model for an idealized perfectly plastic face-centered cubic material as well as for real, strain-hardening copper subjected to equal channel angular pressing (ECAP). For the idealized material, the stress in the plastically deformed part of the billet was shown to be uniform leading to complete filling of the die. Finite element simulations showed that plastic deformation is localized in a narrow shear zone and that the plastic strain and texture in the billet become uniform after ECAP. A simplified recipe for texture calculation akin to that proposed by Gholinia et al. was suggested: it reduces the deformation under ECAP to a combination of two rotations separated by tension-compression. For the case of copper, a strain hardening model based on dislocation density evolution was used. It was shown that due to significant strain hardening during the first ECAP pass, the flowing material does not fill the outside die corner and a strain and texture non-uniformity develops. A gradual decrease of the strain hardening in subsequent ECAP passes leads to a more uniform strain and texture across the billet. The simulated pole figures were shown to be in good agreement with the neutron diffraction data for copper deformed by ECAP (Routes A, C , B and Bc ) suggesting that the model used provides a reliable modeling tool for simulating texture evolution under ECAP.
ISSN:1862-5282
2195-8556
DOI:10.1515/ijmr-2003-0217