Prediction of Reactivity Ratios in Free Radical Copolymerization from Monomer Resonance–Polarity (Q–e) Parameters: Genetic Programming-Based Models

The principal deficiency of the widely utilized Alfrey Price (AP) scheme for computing reactivity ratios in the widely used free radical copolymerization is that it ignores important factors, such as the steric effects. This often leads to inaccurate reactivity ratio predictions by AP model. Accordi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of chemical reactor engineering 2016-02, Vol.14 (1), p.361-372
Hauptverfasser: Shrinivas, K., Kulkarni, Rahul P., Shaikh, Saif, Ghorpade, Ravindra V., Vyas, Renu, Tambe, Sanjeev S., Ponrathnam, S., Kulkarni, Bhaskar D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The principal deficiency of the widely utilized Alfrey Price (AP) scheme for computing reactivity ratios in the widely used free radical copolymerization is that it ignores important factors, such as the steric effects. This often leads to inaccurate reactivity ratio predictions by AP model. Accordingly, in this study, exclusively data-driven, parameter-based new models have been developed for the reactivity ratio prediction in free radical copolymerization. In the model development, a novel artificial intelligence formalism known as “ (GP)” that performs symbolic regression has been employed. The GP-based models possess a different functional form than AP model. Further, parameters of GP-based models were fine-tuned using (LM) nonlinear regression method. A comparison of AP, GP and GP-LM as well as artificial neural network (ANN)-based models indicates that GP and GP-LM models exhibit superior reactivity ratio prediction accuracy and generalization performance (with correlation coefficient magnitudes close to or greater than 0.9) when compared with AP and ANN models. The GP-based reactivity ratio prediction models developed here due to their higher accuracy and generalization capability have the potential of replacing the widely used AP models.
ISSN:2194-5748
1542-6580
DOI:10.1515/ijcre-2014-0039