A generalization of the Paley–Wiener theorem for Mellin transforms and metric characterization of function spaces
We characterize the function space whose elements have a Mellin transform with exponential decay at infinity. This result can be seen as a generalization of the Paley–Wiener theorem for Mellin transforms. As a byproduct in a similar spirit, we also characterize spaces of functions whose distances fr...
Gespeichert in:
Veröffentlicht in: | Fractional calculus & applied analysis 2017-10, Vol.20 (5), p.1216-1238 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We characterize the function space whose elements have a Mellin transform with exponential decay at infinity. This result can be seen as a generalization of the Paley–Wiener theorem for Mellin transforms. As a byproduct in a similar spirit, we also characterize spaces of functions whose distances from Mellin–Paley–Wiener spaces have a prescribed asymptotic behavior. This leads to Mellin–Sobolev type spaces of fractional order. |
---|---|
ISSN: | 1311-0454 1314-2224 |
DOI: | 10.1515/fca-2017-0064 |