A generalization of the Paley–Wiener theorem for Mellin transforms and metric characterization of function spaces

We characterize the function space whose elements have a Mellin transform with exponential decay at infinity. This result can be seen as a generalization of the Paley–Wiener theorem for Mellin transforms. As a byproduct in a similar spirit, we also characterize spaces of functions whose distances fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractional calculus & applied analysis 2017-10, Vol.20 (5), p.1216-1238
Hauptverfasser: Bardaro, Carlo, Butzer, Paul L., Mantellini, Ilaria, Schmeisser, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We characterize the function space whose elements have a Mellin transform with exponential decay at infinity. This result can be seen as a generalization of the Paley–Wiener theorem for Mellin transforms. As a byproduct in a similar spirit, we also characterize spaces of functions whose distances from Mellin–Paley–Wiener spaces have a prescribed asymptotic behavior. This leads to Mellin–Sobolev type spaces of fractional order.
ISSN:1311-0454
1314-2224
DOI:10.1515/fca-2017-0064